Importance of precise geoid model in direct georeferencing and aerial photogrammetry:
 A case study in Sweden

Mohammad Bagherbandi, Arash Jouybari, Faramarz Nilfouroushan, Jonas Ågren
$6^{\text {th }}$ April 2022

Special thanks to: Anders Ekholm, Håkan Ågren and Kulla Rolf (Lantmäteriet)

Background and Aim

Background: Collaboration between Lantmäteriet and HiG:

1. Automated decision making
2. Information supply in Geodata area (Change detection, image analysis, 3D modelling, BIM and crow-sourcing)
3. Information presentation and visualization

PhD thesis Title: Quality assessment in 3D mapping using aerial photogrammetry data

One of the thesis objectives: Analyzing the influence of the deflection of verticals (DOV) in direct georeferencing (DG) of collected aerial images

Classical aerial triangulation using GCPs

Direct georeferencing (DG)

Data collection
Backgroud

Exterior Orientation Paprameters

4
Orthophoto DEM
2

Aerial Triangulation

Background

- Applanix POS AV 510 - GNSS/INS Equipment

Camera		UltraCam Eagle, c=80mm
GNSS receiver		Applanix GPS17 (L1, L2)
Data rate		1 sec
IMU		Applanix IMU31
Data rate		200 Hz
Noise		$0.02 \mathrm{deg} / \mathrm{sqrt}(\mathrm{hr})$
IMU drift		0.1 deg/hr
GNSS/IMU system		Pos / AV 510-DG
claimed accuracy	Position	$<0.1 \mathrm{~m}$
	Velocity	$<0.005 \mathrm{~m} / \mathrm{s}$
	Roll, Pitch	< 0.005 deg.
	Yaw	< 0.008 deg.

- Ultracam Eagle digital camera with
- 80 mm lens
- $67^{\circ}\left(46.1^{\circ}\right)$ camera field of view (FOV) in across track (along track).

Background

- Applanix POSPac is a software to process the collected GNSS and IMU data in Direct Georeferencing.
- Exterior orientation parameters (EOPs) are obtained by integrating GNSS and IMU data using Kalman filtering in POSPac software (E, N, H, fi, Omega, kappa).

Problem definition: Deflection of verticals

Deflection of the plumb line and normal to the ellipsoid.

The deviation between the gravity vector and the ellipsoidal normal at a point is called deflection of the vertical.

Problem definition

$\mathbf{R}_{\text {Boresight }}$ is the rotation matrix from the camera frame to the aircraft body frame by the boresight angles.
S : is scale factor
$\mathbf{r}_{\text {leverarm }}$ is the vector of distance between the phase centre of the GNSS antenna and the camera principal point

Background

int. J. REMOTE SENSING, 1996, vol. 17, No. 11, 2185-2200

Georeferencing of airborne laser altimeter measurements
C. R. VAUGHN

The Laboratory for Hydrospheric Processes, NASA, Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA 23337, U.S.A.
J. L. BUFTON

Laboratory for Terrestrial Physics, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
W. B. KRABILL

The Laboratory for Hydrospheric Processes, NASA, Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA 23337, U.S.A.
D. RABINE

Science Systems Applications Inc., NASA, Goddard Space Flight Center, Bldg. 22, Greenbelt, MD 20771, U.S.A.

- DOV effect ignored

- Gyroscope accuracy was not accurate in the 1990s (~180" >> DOV).

I GÄVLE

Deflection components and their effects on horizontal and vertical components

- The north-south and east-west directions, the deflection of vertical (DOV) components become (Heiskanen and Moritz, 1967) :

$$
\begin{array}{ll}
\text { North-south } \quad \xi=-\frac{1}{R} \frac{\partial \varsigma}{\partial \theta}-\frac{\Delta g}{\gamma} \frac{1}{R} \frac{\partial H}{\partial \theta} & \quad \text { : at the Earth's surface } \\
\text { East-west } & \eta=-\frac{1}{R \sin \theta} \frac{\partial \varsigma}{\partial \lambda}-\frac{\Delta g}{\gamma} \frac{1}{R \sin \theta} \frac{\partial H}{\partial \lambda}
\end{array}
$$

- Upward continuation to flight altitude $\mathbf{z}(\mathrm{km})$

$$
\begin{aligned}
& \mathbf{r}_{\text {Ground }}=\mathbf{r}_{\text {GNSS }}\left(\mathbf{R}_{\text {DOV }}^{-} \mathbf{R}_{\text {INS }}\left(\mathbf{r}_{\text {lever arm }}+s \mathbf{R}_{\text {Boresight }} \mathbf{r}_{\text {image }}\right)\right. \\
& R_{D O V}=R(\eta) R(\xi) \\
& R_{D O V}=\left[\begin{array}{ccc}
\cos \eta & \sin \xi \sin \eta & \sin \eta \cos \xi \\
0 & \cos \xi & -\sin \xi \\
-\sin \xi & \cos \eta \sin \xi & \cos \xi \cos \eta
\end{array}\right]
\end{aligned}
$$

© M. Bagherbandi

Deflection components and their effects on horizontal and vertical components

- Impact of DOV on horizontal and vertical components

$$
\begin{gathered}
\delta h=z \sin (D O V) \\
\delta v=z \tan \left(\frac{F O V}{2}\right) \sin (D O V) \\
D O V=\xi \cos \alpha+\eta \sin \alpha
\end{gathered}
$$

where:
\mathbf{z} is the flight altitude, FOV is the camera field of view, $\boldsymbol{\alpha}$ is azimuth (direction of flight), and DOV is the component of deflection of the vertical in the vertical plane orthogonal to the
 flight direction.

Investigating impact of other parameters

$$
\begin{aligned}
& \delta h=z \sin (\xi \cos \alpha+\eta \sin \alpha) \\
& \delta v=z \tan \left(\frac{F O V}{2}\right) \sin (\xi \cos \alpha+\eta \sin \alpha)
\end{aligned}
$$

- Study on the effects of

- Flight altitude
- Camera Field of view (FOV)

FOV

- Flight direction (Azimuth)
- EGM2008 vs regional data
on the final horizontal and vertical coordinates.

EGM2008 vs regional data

Nordic geodetic commission (NKG) gravity database
 Resolution:
 $0.01^{\circ} \times 0.02^{\circ}$ or
 $0.6^{\prime} \times 1.2^{\prime}$ arc min

EGM2008 database Resolution:
5' x 5' arc min

Results

Results: DOV components using EGM2008 and SWEN17 at the Earth's surface

The DOV is also called SWEN17 to follow the same name as the latest geoid model of Sweden i.e. SWEN17_RH2000.

Difference between SWEN17 and EGM2008 models
$\Delta \xi=\xi_{\text {SWEN17 }}-\xi_{\text {EGM2008 }}$
$\Delta \eta=\eta_{\text {SwEN17 }}-\eta_{\text {EGM2008 }}$

$15^{\circ} \mathrm{E} 20^{\circ} \mathrm{E}$

$15^{\circ} \mathrm{E} 20^{\circ} \mathrm{E}$

Unit: arc second
$15^{\circ} \mathrm{E} 20^{\circ} \mathrm{E}$

$15^{\circ} \mathrm{E} 20^{\circ} \mathrm{E}$

Results: A comparision between DOV components using EGM2008 and SWEN17 at the Earth's surface

Statistics of deflection of the vertical (DOV) using SWEN17 and EGM2008 models and their differences (denoted by Δ) in Sweden.

Unit: arc second.

	Max	Mean	Min	STD
$\xi_{\text {EGM2008 }}$	14.7	0.4	-18.9	3.9
$\eta_{\text {EGM2008 }}$	25.8	6.2	-10.9	3.6
$\xi_{\text {SWEN17 }}$	23.5	0.4	-18.6	3.8
$\eta_{\text {SWEN17 }}$	27.1	6.2	-15.9	4.1
$\Delta \xi$	12.9	0.0	-13.5	1.1
$\Delta \eta$	12.1	0.0	-11.7	1.1

Simulation considering different flight heights

Results: DOV comparison using SWEN17 and EGM08 at different flight heights

Deflection components and their effects on horizontal and vertical components

4km flight altitude

Statistics of the effect of deflection of the vertical (DOV) on horizontal and vertical components using SWEN17

```
\deltah=z\operatorname{sin}(DOV)
\deltav=z\operatorname{tan}(\frac{FOV}{2})\operatorname{sin}(DOV)
DOV = \xi\operatorname{cos}\alpha+\eta\operatorname{sin}\alpha
```


Along track

Across track

Difference between DOVs

4 km flight altitude

$$
\begin{aligned}
\Delta \xi & =\xi_{\text {SWEN17 }}-\xi_{\text {EGM2008 }} \\
\Delta \eta & =\eta_{\text {SWEN17 }}-\eta_{\text {EGM2008 }}
\end{aligned}
$$

The effect DOV anomaly computed using SWEN17and the EGM2008

Assuming Azimuth $\alpha=0^{\circ}, F O V=46.1$ and $4 \mathbf{k m}$ flight altitude

$$
\begin{aligned}
& \Delta \delta h=z\left[\sin \left(D O V_{\alpha}^{\mathrm{EGM} 2008}\right)-\sin \left(D O V_{\alpha}^{\mathrm{SWEN} 17}\right)\right] \\
& \Delta \delta v=z \tan \left(\frac{F O V}{2}\right)\left[\sin \left(D O V_{\alpha}^{\mathrm{EGM} 2008}\right)-\sin \left(D O V_{\alpha}^{\mathrm{SWEN} 17}\right)\right] \\
& D O V_{\alpha}^{\mathrm{EGM} 2008}=\xi_{\mathrm{EGM} 2008} \cos \alpha+\eta_{\mathrm{EGM} 2008} \sin \alpha \quad 65^{\circ} \mathrm{N} \\
& D O V_{\alpha}^{\mathrm{SWEN} 17}=\xi_{\text {SWEN } 17} \cos \alpha+\eta_{\text {SWEN } 17} \sin \alpha
\end{aligned}
$$

Unit: cm

Impact of azimuth-angle variations

$$
D O V=\xi \cos \alpha+\eta \sin \alpha \quad \delta h=z \sin (D O V)
$$

Impact of azimuth-angle variations (FOV= 46.1° and 67°)

$$
\delta v=z \tan \left(\frac{F O V}{2}\right) \sin (D O V)
$$

Impact of azimuth-angle variations in Götoberg, Jönköping, Dalarna and Norrbotten

Location	Latitude	Longitude	Best Azimuth
Göteborg	$56^{\circ}-58^{\circ} \mathrm{N}$	$12^{\circ}-13.5^{\circ} \mathrm{E}$	$\sim 120^{\circ}\left(300^{\circ}\right)$
Jönköping	$56^{\circ}-58^{\circ} \mathrm{N}$	$13^{\circ}-16^{\circ} \mathrm{E}$	$\sim 110^{\circ}(290)$
Dalarna	$61^{\circ}-63^{\circ} \mathrm{N}$	$13^{\circ}-16^{\circ} \mathrm{E}$	$\sim 150^{\circ}\left(330{ }^{\circ}\right)$
Norrbotten	$66^{\circ}-68^{\circ} \mathrm{N}$	$17-20^{\circ} \mathrm{E}$	$\sim 170^{\circ}\left(350{ }^{\circ}\right)$

Source: $\underline{\text { https://www.britannica.com/place/Sweden }}$

Impact of azimuth-angle variations (FOV= 67°) in Götoberg

Impact of azimuth-angle variations (FOV= 67°) in Jönköping

Impact of azimuth-angle variations (FOV= 67°) in Dalarna

Impact of azimuth-angle variations (FOV= 67°) in Norrbotten

Impact of azimuth-angle variations in Götoberg, Jönköping, Dalarna and Norrbotten

Location	Latitude	Longitude	Best Azimuth
Göteborg	$56^{\circ}-58^{\circ} \mathrm{N}$	$12^{\circ}-13.5^{\circ} \mathrm{E}$	$\sim 120^{\circ}(300)$
Jönköping	$56^{\circ}-58^{\circ} \mathrm{N}$	$13^{\circ}-16^{\circ} \mathrm{E}$	$\sim 110^{\circ}\left(290^{\circ}\right)$
Dalarna	$61^{\circ}-63^{\circ} \mathrm{N}$	$13^{\circ}-16^{\circ} \mathrm{E}$	$\sim 150^{\circ}\left(330^{\circ}\right)$
Norrbotten	$66^{\circ}-68^{\circ} \mathrm{N}$	$17^{\circ}-20^{\circ} \mathrm{E}$	$\sim 170^{\circ}\left(350^{\circ}\right)$

Source:https://www.britannica.com/place/Sweden

Conclusions

- We studied the impact of the geoid slope with respect to the Earth's reference ellipsoid in 3D mapping using aerial photogrammetry in Sweden
- The influence of the anomalous gravity field (deflection of verticals) in GNSS/INS applications is not ignorable.
- Latest Applanix company's INS sensor (POS AV 610 model) provides inertial data with high accuracy (about 9" for roll and pitch and 18" for heading (yaw)).

POS AV	$\begin{aligned} & 510 \\ & \text { SPS } \end{aligned}$	$\begin{gathered} 510 \\ \text { RTX }^{3} \end{gathered}$	510 RTX PostProcessed ${ }^{4}$	510 SmartBase PostProcessed ${ }^{4}$	$\begin{aligned} & 610 \\ & \text { SPS } \end{aligned}$	$\begin{gathered} 610 \\ \text { RTX }^{3} \end{gathered}$	610 RTX PostProcessed ${ }^{4}$	610 SmartBase Post- Processed ${ }^{4}$
Position (m)	$\begin{gathered} 1.5 \mathrm{H} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & <0.1 \mathrm{H} \\ & <0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <0.1 \mathrm{H} \\ & <0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <0.05 \mathrm{H} \\ & <0.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.5 \mathrm{H} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & <0.1 \mathrm{H} \\ & <0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <0.1 \mathrm{H} \\ & <0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <0.05 \mathrm{H} \\ & <0.1 \mathrm{~V} \end{aligned}$
Velocity (m/s)	0.050	0.050	0.005	0.005	0.030	0.030	0.0050	0.0050
Roll and Pitch (deg)	0.008	0.008	0.005	0.005	0.005	0.005	0.0025^{5}	0.0025^{5}
True Heading ${ }^{2}$ (deg)	0.070	0.040	0.008	0.008	0.030	0.020	0.0050	0.0050

$$
\begin{aligned}
& 0.0025(\mathrm{deg}) \times 3600=9^{\prime \prime} \\
& 0.005(\mathrm{deg}) \times 3600=18^{\prime \prime}
\end{aligned}
$$

Results: DOV comparison using SWEN17 and EGM08 at different flight heights

Conclusions

- Our results show that the max DOV impact (in Sweden) is about -30 cm and -20 cm in horizontal and vertical components, respectively, considering:
- $\mathrm{z}=4000 \mathrm{~m}$
- $\mathrm{FOV}=67^{\circ}$
- Azimuth $=0^{\circ}$
- The impact of Azimuth and flight height should be investigated in the planning stage properly.
- The results showed that the calculated DOV using the EGM2008 model is sufficiently precise in Sweden except for the mountainous areas because of the resolution of the EGM2008 model and the topographic signal was not corrected in the EGM2008 model.
- SWEN17 geoid model is proposed for the rough topography areas

Thank you!

Mohammad Bagherbandi

Professor of Geomatics

Faculty of Engineering and Sustainable Development
University of Gävle
80176 Gävle, Sweden
https://hig.se/
mohammad.bagherbandi@hig.se
+46 (0)26648419
https://www.linkedin.com/public-profile/settings?trk=d flagship3 profile self view public profile

EXTRA SLIDES

Applanix POSPac

Timing

Start	124835.003
End	132144.134

\square Entire time interval \square Seconds of start week
Default Mapping Frame \qquad
Mapping Frame
ETRS89 SWEREF 99 TM SWEREF 99 TM NONE 1989.000

$$
\begin{aligned}
& \xi(r, \theta, \lambda)=-\frac{1}{r} \frac{\partial N}{\partial \theta}=-\frac{1}{r \gamma} \frac{\partial T}{\partial \theta} \\
& \eta(r, \theta, \lambda)=-\frac{1}{r \sin \theta} \frac{\partial N}{\partial \lambda}=-\frac{1}{r \gamma \sin \theta} \frac{\partial T}{\partial \lambda}
\end{aligned}
$$

EGM

Or

regional geoid model?

Extra slide

$$
\mathbf{r}_{\text {Ground }}=\mathbf{r}_{\text {GNSS }}+\mathbf{R}_{\text {DOV }} \mathbf{R}_{\text {INS }}\left(\mathbf{r}_{\text {lever arm }}+s \mathbf{R}_{\text {Boresighth }} \mathbf{r}_{\text {image }}\right)
$$

The DOV rotation matrix is the product of two matrices

$$
R_{\mathrm{DOV}}=R_{\mathrm{y}}(\eta) R_{\mathrm{x}}(\xi)
$$

$$
\begin{aligned}
& R_{\mathrm{x}}(\xi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\xi) & -\sin (\xi) \\
0 & \sin (\xi) & \cos (\xi)
\end{array}\right] \\
& R_{\mathrm{y}}(\eta)=\left[\begin{array}{ccc}
\cos (\eta) & 0 & \sin (\eta) \\
0 & 1 & 0 \\
-\sin (\eta) & 0 & \cos (\eta)
\end{array}\right]
\end{aligned}
$$

The DOV matrix becomes

$$
R_{\text {DOV }}=\left[\begin{array}{ccc}
\cos (\eta) & \sin (\xi) \sin (\eta) & \sin (\eta) \cos (\xi) \\
0 & \cos (\xi) & -\sin (\xi) \\
-\sin (\xi) & \cos (\eta) \sin (\xi) & \cos (\xi) \cos (\eta)
\end{array}\right]
$$

Geoid vs quasigeoid

The world-wide task of the geodetic community today to determine "the 1-cm geoid" is not easy, in particular in mountainous regions, as there is a major problem stemming from the geoid dependence on the only partly known topographic mass distribution, and this problem occurs also in determining orthometric heights.

In 1945 M. S. Molodensky (Molodensky et al. 1962) suggested substituting the geoid and orthometric height with the concepts of the quasigeoid and normal height, a brilliant idea to avoid the above problem with the topographic mass distribution.

Deflection of vertical components using EGM2008

$$
\begin{aligned}
& \xi(r, \theta, \lambda)=-\frac{1}{r} \frac{\partial N}{\partial \theta}=-\frac{1}{r \gamma} \frac{\partial T}{\partial \theta} \\
& \eta(r, \theta, \lambda)=-\frac{1}{r \sin \theta} \frac{\partial N}{\partial \lambda}=-\frac{1}{r \gamma \sin \theta} \frac{\partial T}{\partial \lambda} \\
& \left.T(r, \theta, \lambda)=\frac{G M}{a} \sum_{n=2}^{n_{\max }} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1} \bar{c}_{n m} \cos m \lambda+\bar{s}_{n m} \sin m \lambda\right) \bar{P}_{n m}(\cos \theta) \\
& \xi(r, \theta, \lambda)=\frac{G M}{a r \gamma} \sum_{n=2}^{n_{\max }} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1}\left(\bar{c}_{n m} \cos m \lambda+\bar{s}_{n m} \sin m \lambda\right)\left(\bar{P}_{n m+1}(\cos \theta)-m \tan \varphi \bar{P}_{n m}(\cos \theta)\right) \\
& \eta(r, \theta, \lambda)=\frac{G M}{a \gamma r \sin \theta} \sum_{n=2}^{n_{\max }} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1} m\left(\bar{c}_{n m} \sin m \lambda-\bar{s}_{n m} \cos m \lambda\right) \bar{P}_{n m}(\cos \theta)
\end{aligned}
$$

$$
\begin{aligned}
& x=(\mathbb{N}+h) \cos \varphi \cos \lambda \\
& y=(\mathbb{N}+h) \cos \varphi \sin \lambda \\
& z=\left[\mathbb{N}\left(1-\mathrm{e}^{2}\right)+h\right] \sin \varphi \\
& r=\sqrt{x^{2}+y^{2}+z^{2}} \quad \mathbb{N}=a / \sqrt{1-e^{2} \sin ^{2} \varphi}
\end{aligned}
$$

Computation of normal gravity value of a point on Geodetic Reference System 1980 (GRS80) ellipsoid using Somigliana's formula

$$
\gamma=\gamma_{e} \frac{1+k \sin ^{2} \varphi}{\left(1-e^{2} \sin ^{2} \varphi\right)^{1 / 2}} \quad k=\frac{b \gamma_{p}-a \gamma_{e}}{a \gamma_{e}}
$$

Spherical harmonics coefficients

Upward continuation

- Using earth's global gravitational model EGM2008 (spectral space)

$$
\begin{aligned}
& \xi(r, \theta, \lambda)=\frac{G M}{\operatorname{ar\gamma }} \sum_{n=2}^{n_{\text {max }}} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1}\left(\bar{c}_{n m} \cos m \lambda+\bar{s}_{n m} \sin m \lambda\right)\left(\bar{P}_{n m+1}(\cos \theta)-m \tan \varphi \bar{P}_{n m}(\cos \theta)\right) \\
& \eta(r, \theta, \lambda)=\frac{G M}{a \gamma r \sin \theta} \sum_{n=2}^{n_{\text {max }}} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1} m\left(\bar{c}_{n m} \sin m \lambda-\bar{s}_{n m} \cos m \lambda\right) \bar{P}_{n m}(\cos \theta)
\end{aligned}
$$

- Regional geoid model (using Poisson's Integral)
$f_{(r, \theta, \lambda)}=\frac{R\left(r^{2}-R^{2}\right)}{4 \pi} \int_{\lambda^{\prime}=0}^{2 \pi} \int_{\theta^{\prime}=0}^{\pi} \frac{f_{\left(R, \theta^{\prime}, \lambda^{\prime}\right)}}{l^{3}} \sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime} \longrightarrow F\left(\left[\begin{array}{ll}\xi & \eta\end{array}\right]_{(k, z)}\right)=F\left(\left[\begin{array}{ll}\xi & \eta\end{array}\right]_{(k, 0)}\right) \exp ^{(-2 \pi k z)}$
$l=\sqrt{r^{2}+R^{2}-2 r R \cos \psi}$
$r=R+H$
Heiskanen and Moritz (1967, p. 37) and Sjöberg and Bagherbandi (2017, p. 94)

By using the value of the gradients of [] function on the surface, [] can be expanded as a Taylor series as follows:

$$
\begin{aligned}
& \text { Flight altitude } \quad \text { Earth's surface } \\
& \qquad\left[\begin{array}{lll}
\xi & \eta
\end{array}\right]_{(R+H+z, \theta, \lambda)}
\end{aligned}=\left[\begin{array}{ll}
\xi & \eta
\end{array}\right]_{(R+H, \theta, \lambda)}+\frac{\partial\left[\begin{array}{ll}
\xi & \eta
\end{array}\right]}{\partial r} z+\frac{\partial^{2}\left[\begin{array}{ll}
\xi & \eta
\end{array}\right]}{\partial r^{2}} z^{2}+\ldots .
$$

by neglecting second and higher orderterms, this equation can be written in linear approximation.
To determine $\frac{\partial \xi}{\partial r}$ see Heiskanen and Moritz (1967, p.38).

Effect of curvature of the plumb line on ξ

$$
\delta \xi=-\int_{H_{A}}^{H_{B}} k_{x} d H \approx 0.17^{\prime \prime} \sin 2 \varphi \Delta H
$$

$$
k_{x}=\left.\frac{1}{g} \frac{\partial g}{\partial x}\right|_{P} \approx \frac{1}{\gamma} \frac{\partial \gamma}{\partial x}=\frac{1}{r} \frac{\partial \gamma}{\partial \varphi}=\frac{\gamma_{e}}{r} f \sin 2 \varphi
$$

Normal gravity

Actual gravity

$$
\gamma=\gamma_{e} \frac{1+k \sin ^{2} \varphi}{\left(1-e^{2} \sin ^{2} \varphi\right)^{1 / 2}}
$$

Somigliana's formula

Effect of curvature of the plumb line on ξ in 4 km

Curvature of the plumb line (© M. Bagherbandi modified after Vanicek and Krakiwsky 1980)
$15^{\circ} \mathrm{E} \quad 20^{\circ} \mathrm{E}$

I GÄVLE

Comparison of the SWEN17 and EGM2008 models

$$
\begin{aligned}
& \Delta \delta h=z\left[\sin \left(D O V_{\alpha}^{\mathrm{EGM} 2008}\right)-\sin \left(D O V_{\alpha}^{\text {SWEN } 17}\right)\right] \\
& \Delta \delta v=z \tan \left(\frac{F O V}{2}\right)\left[\sin \left(D O V_{\alpha}^{\mathrm{EGM2008}}\right)-\sin \left(D O V_{\alpha}^{\text {SWEN17 }}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& D O V_{\alpha}^{\text {sweNIT }}=\xi_{\text {SWENII }} \cos \alpha+\eta_{\text {SWENIT }} \sin \alpha
\end{aligned}
$$

		Flight altitudes (km)					
		$\mathrm{z}=1$	$\mathrm{z}=2$	$\mathrm{z}=3$	$\mathrm{z}=4$	$\mathrm{z}=5$	$\mathrm{z}=6$
$\underset{\mathrm{cm}}{\Delta \delta h_{(\alpha)}}$	Max	2.58	3.31	3.25	2.88	2.60	2.78
	Mean	0.00	0.00	-0.01	-0.01	-0.01	-0.01
	Min	-2.76	-3.25	-3.05	-2.61	-2.33	-2.14
	STD	0.29	0.37	0.38	0.38	0.37	0.37
$\left.\begin{array}{cc}\left.\text { (} \alpha=0^{\circ}\right) \\ \mathrm{cm}\end{array}\right) \quad \mathrm{FOV}=46.1^{\circ}$	Max	1.10	1.41	1.38	1.23	1.11	1.18
	Mean	0.00	0.00	0.00	0.00	0.00	-0.01
	Min	-1.18	-1.38	-1.30	-1.11	-0.99	-0.91
	STD	0.13	0.16	0.16	0.16	0.16	0.16
	Max	1.71	2.19	2.15	1.91	1.72	1.84
	Mean	0.00	0.00	0.00	-0.01	-0.01	-0.01
	Min	-1.83	-2.15	-2.02	-1.73	-1.54	-1.42
	STD	0.19	0.25	0.25	0.25	0.25	0.25

Comparison of the DOV component obtained from SWEN17 model and subtraction of astronomical and geodetic coordinates
in Stockholm observatory $\varphi=59^{\circ} 20^{\prime} 29.16^{\prime \prime}, \lambda=18^{\circ} 03^{\prime} 16.76^{\prime \prime}$

$$
\begin{aligned}
& \xi_{\text {astro-geo }}^{\text {ast }}=\Phi-\varphi \\
& \eta^{\text {astro-geo }}=(\Lambda-\lambda) \cos \varphi
\end{aligned}
$$

DOV component	Magnitude	
$\xi^{\text {astro-geo }}$	Using Wargentin (1759) estimation for Ф ($59^{\circ} 20^{\prime} 31.13^{\prime \prime}$)	1.97
	Using Cronstrand (1811) estimation for $\Phi\left(59^{\circ} 20^{\prime} 34.8^{\prime \prime}\right)$	5.64
	Using Selander (1835) estimation for $\Phi\left(59^{\circ} 20^{\prime} 33.8^{\prime \prime}\right)$	4.64
	Mean value of $\xi^{\text {astro-geo }}$	4.08
$\eta^{\text {astro-geo }}$		6.65
$\xi_{\text {SWEN17 }}$		3.87
$\eta_{\text {swenil }}$		6.57

Figure 1. The old observatory of Stockholm (Wargentin, 1761)

