

Semantic Representations on Sattellite Images Amy Loutfi

Center for Applied Autonomous Sensor Systems

Project: Large Scale Semantic Perception on Sattelite Imagery

Goal: Automatically augment sattelite imagery with annotations about objects, functions, and relations to enable 1) users to query the map 2) improve the recognition of objects and entities

- 3D maps:
 - .Formats: Ortho + DSM (GeoTIFF) and Collada.
 - .Boden, Stockholm, part of Örebro (Collada only).
 - .Multiple color bands to extract different features.
 - Resolution: 0.5m/px in all dimensions.
 - .UTM coordinates, WGS84, ellipsoid.

Ortho + DSM

•Multiband + Synthetic Bands

•Ortho – aerial images are combined to remove projection tilts and displacements.

.DSM – surface model – per-pixel mapped to Ortho, elevation includes buildings and trees.

.GeoTiff

Raw Bands

•Panchromatic [450-800] - blend of visible light into a grayscale;

•Coastal [400-450] – violet and deep blue, useful primarily for shallow waters, aerosols, dust, smoke;

•Blue [450-510] – useful for soil/vegetation discrimination, forest type mapping, and identifying man-made features;

•Green [510-580] – helps find oil on the surface of water, and vegetation (plant life); reflects more green light than any other visible color; man-made features are still visible;

•Yellow [585-625] - soils, sick foliage, hardwood, larch foliage (autumn);

•Red [630-690] - useful for identifying vegetation types, soils, and urban (city and town) features;

.Red Edge [705-745] – where the reflectance of vegetation changes rapidly;

•NIR1 [770-895] – used to measure plant health, good for mapping shorelines and biomass content; very good at detecting and analyzing vegetation;

•NIR2 [860-1040] - similar to NIR1

.+ sharpened RGB

•Projected 3D mesh + textures.

.13 levels of details, a lot of data, quadtree arrangement.

Project Workpackages

WP1 SEGMENT & CLASSIFY: segmentation and classification of 3D airborne map data

WP2 ANNOTATE & ANCHOR: segment regions in the map for classification and categorize the segments into fixed semantic categories.

WP3 REASON & QUERY: a search engine which is composed of a reasoner and a query mechanisms

Traditional strategy

7 classes. Parking replaced by bridge.

Manual correction

Railroad? Water?

Manually labeled groundtruth

16000	2000	4000	1000	12000	14000 1600	0	
14000						Railroad	0.2%
12000						Water	0.7%
						Building	1.9%
10000						Bridge	0.2%
8000						Road	0.8%
6000						Ground	0.5%
4000						Vegetation	1.1%
2000						Unlabeled	94.7%

5.3 % of map labeled in 6 hours. (100% would have taken >120 hours)

Classification result

- Trained on 90% initial manual labeled groundtruth
- Tested on 1000 randomly drawn pixels per class from the remaining 10 %

Equal class distribution in training data

95.6	1.1	0.3	1.4	0.3	0.9	2.9
1.2	95.0	0.6	0.7	0.1	0.8	1.7
0.2	1.3	94.1	3.4	0.1	0.4	3.8
0.7	0.7	1.9	78.7	7.2	2.4	3.6
0.2	0.1	0.1	9.2	91.0	0.4	0.9
0.5	0.7	0.5	2.7	0.6	93.3	2.4
1.5	1.1	2.5	3.8	0.6	1.9	84.7

Overall accuracy: 90.34%

OSM groundtruth

Roads and buildings are well labeled, but not the other classes

Lantmäteriet groundtruth

Unlabeled	17.8 %
Vegetation	11.4 %
Ground	15.4 %
Road	22.4 %
Bridge	0.0 %
Building	13.8 %
Water	17.0 %
Railroad	2.23 %

All classes well labeled, except bridge

Using **on-line** sources of geo-data

Läntmateriet (vector-based representation of geo-related features)

(I) Using **on-line** sources of geo-data:

Läntmateriet (vector-based representation of geo-related features)

→ Published in GIScience 2016 - Workshop on Spatial Data on the Web

(I) Using **on-line** sources of geo-data:

Merging Läntmateriet with the Classifier output (focusing on buildings)

Semantic Modelling

Development of the domain knowledge of Boden in the form of an ontology (OntoCity)

>100 000 objects stored in the ontology from the map

Spatial Relations (along_with, close_to, ...) RCC8

Contains information about objects and their functions, affordances

Exploiting the semantics

Aerial Path Planner Scenario:

Scenario: simulating a drone flying over the city within a certain elevation range

RRT Path Planner (LaValle, Steven M. October 1998)

→RRT (Rapidly-Exploring Random Tree)

→Is good at quickly finding a workable path

Scenario: simulating a drone flying over the city within a certain elevation range

RRT Path Planner (LaValle, Steven M. October 1998)

Scenario: simulating a drone flying over the city within a certain elevation range

RRT Path Planner (LaValle, Steven M. October 1998)

→Collision Checking

Based on the **Elevation** values of the regions (avoiding the obstacles)

Based on the **Semantics** of the regions (\rightarrow a preliminary version implemented)

No-constraint (only elevation)

Avoiding hospitals

→Collision Checking

Since RRT is not complete, it may not find a path when there is semantic constraints

No-constraint (only elevation)

Avoiding Water

The sampling process needs to be guided by the semantics

SemMap Client 2.0: Labels and Shading

SemMap Client 2.1: Disaster Simulation

Flood simulation with the labels showing the Pol data when it is not flooded

SemMap Client 3.0: Stockholm!

SemMap Client 3.0: Path Visualization

SemMap Client 3.0: VR

Full Pipeline from data to knowledge

What is Semantic Perception and why is it important

Process of augmenting sensor data into abstract, and typically, symbolic representations

It is important as it facilitates:

Processes such as planning for robotics (e.g. Lift the crate)Integration of automated reasoning with sensor data

Semantic Perception requires meaningful semantics i.e. Shared and with relations between the concepts.

Thank you